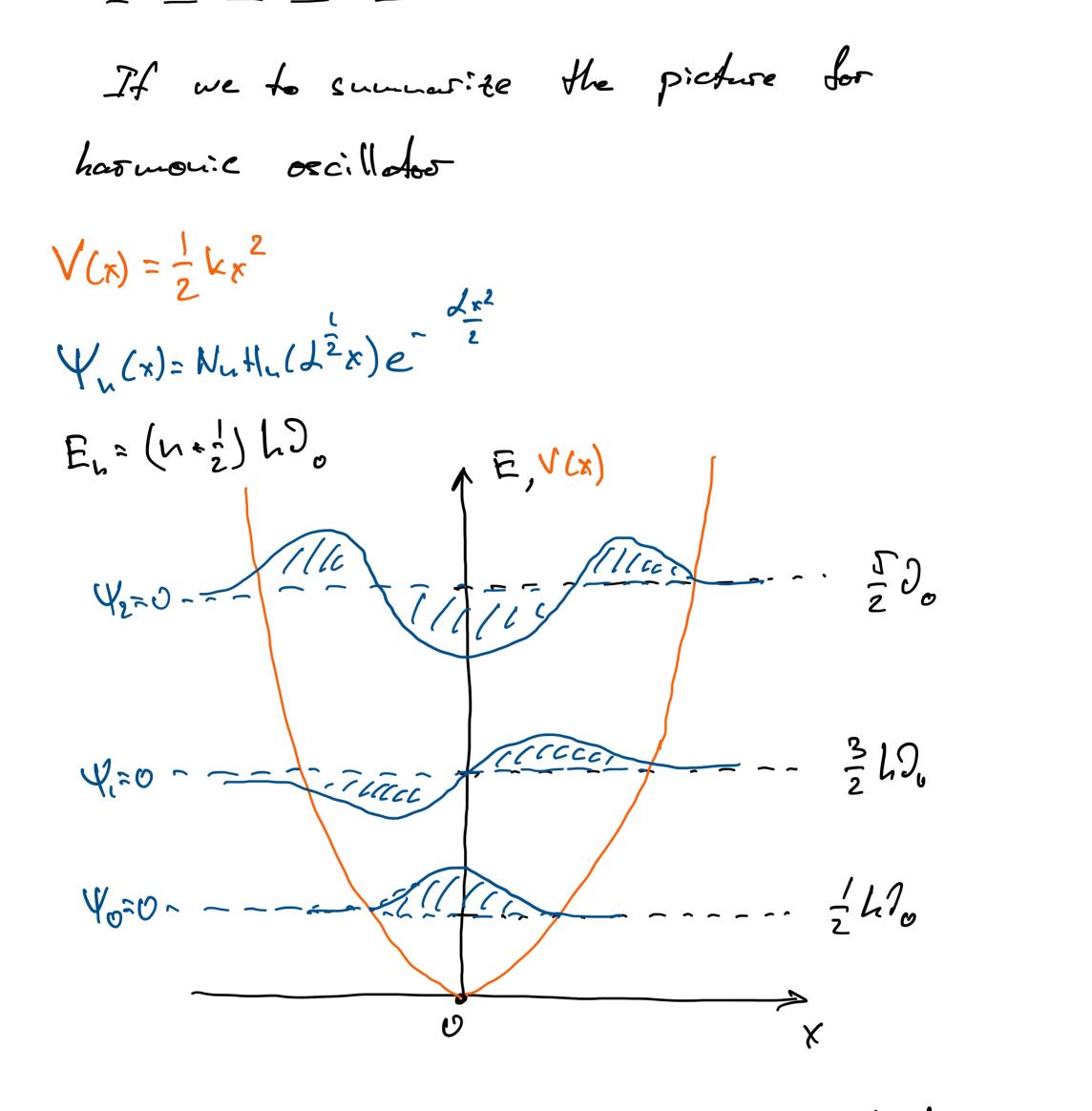
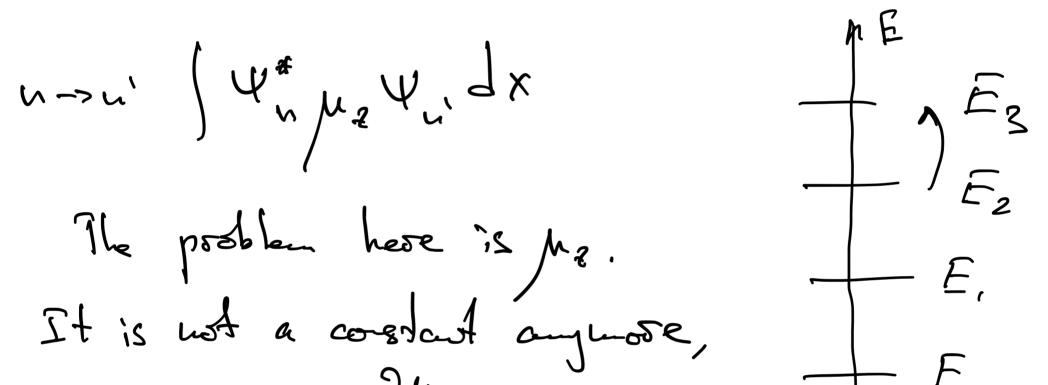
Enegies of harmonic oscillator

For the groudestate wavefuntion! $\begin{aligned} \Psi_{0} &= N_{0}e^{-\frac{1}{2}} \xrightarrow{-} F_{0} &= \frac{1}{2}h\partial_{0} \\ \Psi_{n} &= N_{n}H_{n}(\sqrt{\frac{1}{2}}x)e^{-\sqrt{\frac{\pi^{2}}{2}}} \xrightarrow{-} F_{n} &= \frac{2}{2}h\partial_{0} \end{aligned}$ We will snoply need to input it to Strictinger equation: dx^2 $V_1 = N_1 \times e^{-\frac{1}{2}} \longrightarrow E_1 = \frac{3}{2}h_0$ $\Psi_{1} = N_{2}(4dx^{2}-2) \longrightarrow E_{2} = \frac{5}{2}h_{0}^{2}$ $\dot{\Psi}_{n} = N_{n} + l_{n} \left(\mathcal{J}_{x}^{2} \right) e^{-\frac{\mathcal{J}_{x}^{2}}{2}} = F_{n} = \left(h_{x} + \frac{1}{2} \right) h_{n}^{2}$ E,=; 17, $E_{1} = \frac{3}{2}L^{2}$ $E_{c}=\frac{1}{2}h_{o}^{2}$ useless axis 0





as
$$\mu = \mu_{0} + \frac{\partial \mu}{\partial x}$$

$$\int \Psi_{n}^{*} \mu_{2} \Psi_{n} dx = \int \Psi_{n}^{*} (\mu_{0} + \frac{\partial \mu}{\partial x}) dx =$$

$$= \int \mu_{0} \int \Psi_{n}^{*} \Psi_{n} dx + \frac{\partial \mu}{\partial x} \int \Psi_{n}^{*} x \Psi_{n} dx$$
i) if $\frac{\partial \mu}{\partial x} = 0$, $\int \mu_{n} dx = \frac{\partial \mu}{\partial x} \int \Psi_{n}^{*} x \Psi_{n} dx$
i) if $\frac{\partial \mu}{\partial x} = 0$, $\int \mu_{n} dx = 0$, $\int \mu_{0} dx = \frac{\partial \mu}{\partial x}$
i) if $\frac{\partial \mu}{\partial x} = 0$, $\int \mu_{n} dx = 0$, $\int \mu_{0} dx = \frac{\partial \mu}{\partial x}$
i) if $\frac{\partial \mu}{\partial x} = 0$, $\int \mu_{0} dx = 0$
i) $\Psi_{n}^{*} x \Psi_{n} dx = 0$
ii) $\Psi_{n}^{*} x \Psi_{n} dx = 0$
iii) $\Psi_{n}^{*} x \Psi_{n} dx = 0$
iv) $\Psi_{n}^{*} x \Psi_{n}^{*} dx = 0$
iv) $\Psi_{n}^{*} dx = 0$
iv) $\Psi_{n}^{*} x \Psi_{n}^{*} dx = 0$
iv) $\Psi_{n}^{*} dx$

$$= A \int H_{n} H_{n'*1} dx - B \int H_{n} H_{n'-1} dx$$

$$\neq 0 \qquad \neq 0$$

$$n = n'+1 \qquad n = n'-1$$

$$\int \Delta n = \pm 1 \int V$$